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Abstract

This study is concerned with the treatment of the dynamic behavior of interacting cracks in a piezoelectric layer bonded to two
dissimilar piezoelectd half planes subjected to harmoniatiaplane shear waves. The pegable electriboundary ondition
is considered. By use of the Fourier transform technique, the problem can be solved with the help of two pairs of dual integral
equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual
integral equations, the jumps of the displacements across the crack surfaces are expanded in two series of Jacobi polynomials.
The electromechanical behavior of two pairs of unequal pamedeks was determined. Numerical examples are provided to
show the effects of the geometry of the cracks, the frequency of the incident waves and materials properties upon the dynamic
stress intensity factors (DSIFs) and the electric displacement intensity factors.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Due to the inherent direct and converse piezoelectric effects between mechanical deformation and electric field, piezoelectric
materials have been widely used in transducers and sensors. Among the piezoelectric materials, piezoelectric ceramics are
widely used due to their high piezoelectric performance. However, piezoelectric ceramics in mechanical behavior are brittle and
susceptible to cracking. Therefore, it's necessary to analyzedtiesity and describe accurately quantitatively the damage and
fracture processes taking place in piezoelectric materials.

Piezoelectric materials are mostly being used or considered for use in situations where dynamic loading is involved. There-
fore, it's more important to study dynamic mechanics of these materials. Chen and Yu (1998) investigated the anti-plane
vibration of infinite cracked piezoela@t medium with a single crack under impeeable electric boundga condition. Narita
and Shindo (1998) solved the problem of a line crack subjected to horizontally polarized shear waves in an arbitrary direction
with the help of the dynamic theory of anti-plane piezoelectricity. Meguid and Wang (1998) studied the dynamic interaction be-
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tween two cracks in a piezoelectric medium under incident anti-plane shear waves loading. They also investigated the dynamic
behavior of piezoelectric materials containing interacting cracks under anti-plane mechanical and in-plane electric loading
(Wang and Meguid, 2000). Many piezlectric devices are multi-layed by dissimilar piezoeledt materials, and they are
susceptible to cracking due to uneven stress distributions. Following the dynamic theory of linear piezoelectricity, Shindo et al.
(2002) considered the scattering of horizontally polarized shear waves from a single piezoelectric fiber partially bonded to an
elastic matrix. The problem of interface cracks in piezoelectric materials can be found in works (Soh et al., 2000; Li and Tang,
2003; Zhou and Wang, 2002; Narita et al., 1999). Recently, Hedrad. (2002) studied the pesable multi-cracks problem

in one kind of piezoelectric material strip subjected to dynamic anti-plane shear loading. However, the lengths of cracks are
the same and cracks are not interface cracks. According to the authors’ knowledge, the dynamic electro-elastic behavior of two
pairs unequal parallel permeable interface cracks has not been studied.

In this paper, the scattering of anti-plane shear waves in piezoelectric materials with two pairs of unequal parallel interface
cracks is considered by use of Schmidt method. By use of the Fourier transform, the problem could be solved with two pairs of
dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve
the dual integral equations, the jumps of the displacements across the crack surfaces were expanded in two series of Jacobi
polynomials. This process is quite different from those adopted in the references mentioned above. Some numerical results
are presented graphically to show the effects of the geometric parameters, the frequency of the incident waves and materials
properties on the dynamic stress and electric displacement intensity factors.

2. Statement of the problem

Consider an infinitely long piezoelectric layer with i thickness bonded to two dissimilar piezoelectric half planes sub-
jected to harmonic anti-plane shear waves, as shown in Fig. 1. Here, Cartesian coofdinatesare the principal axes of the
material symmetry, while the-axis is oriented in the poling direction of the piezoelectric materials. Itis assumed that two pairs
of unequal parallel Griffith interface cracks with different lengths, 2b) are located along the bonding line. Consider one pair
of cracks located fromi—a to/ +a aty =h and froml — b to ! + b aty = —h, with respect to the rectangular coordinates
(x, y), and the other pair located froml —a to —l +a aty = h and from—/ — b to —I + b aty = —h. In the present study, the
harmonic anti-plane shear waves is vertically incident. The mechanical field corresponding to a time harmonic waves can be
expressed in terms of the frequeneysuch thaty; (x, y, t) = rgexp—iwt]. Because the time dependence of all field quantities
assumed to be of the form gxpiwt] is @ common factor in all equations, it will be suppressed. We only considetghst
positive. Body forces and the free charges are ignored in the present work.

The dynamic anti-plane governing differential equations for piezoelectric materials in absence of body forces and free
charges can be expressed as follows

2. (k)
k k 0cw
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T

Fig. 1. Two pairs of unequal parallel interface cracks in piezoelectric materials.
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in which w® and¢® are the mechanical displacement and the electric potential @hik the mass density of piezoelectric
materials, c(k) is the elastic stiffness measured in a constant electric faé@i is the piezoelectric constant alaéf‘l is the
dielectric permittivity measured at a uniform strain of the piezoelectric materials, WhRite 82/8x + 82/8y is the two-
dimensional Laplace operator. The supersaript = 1, 2, 3, 4) refers to the upper half plane-1, the layer-2, the layer-3 and the
lower half plane-4 as shown in Fig. 1, respectively.

The constitutive equations of the piezoelectric materials are

D( )_e](s)w( ) ( )¢( ) 4)

where r/(.lz‘), wff), d)Ff) and Dﬁ.k) (j = x,y) are the stress, strain, electric field strength and electric displacement tensors,
respectively.

As discussed in reference (Soh et al., 2000), since the opening displacement is zero for the present anti-plane shear prob-
lem, the crack surfaces can be assumed to be in perfect contact. Accordingly, both the electric potential and normal electric
displacement are assumed to be continuous across the crack surfaces. Therefore, in this paper, we obtain the permeable electric
boundary condition. Similar to the work (Narita and Shin@898), the boundary conditions tife present problem can be
stated below:

Do =t@wn, oD, h) =@ (x,h),

DM,y =DPx,h) (1x=0), (5a-c)
w@x,0=w3x,0), ryz)(x 0)= fyz)(x 0),

$?x,0=¢®x,0, DPx,0=DPx 0 (x>0), (6a-d)
D —hy =2 —h), ¢ —h) =@ (x, —h).

DR (x, )y =DV (x, ~h) (1x > 0), (7a-c)
Do m=1@ @ n=—1 (-a<lx|<I+a), ®)

3 » . 2h

Ty, (x, —h) =1y, (x, —h) = —toexp[lwc(—z)} (l —-b< x| <1 +b), 9
w(l)(x,h) = w(z)(x,h) (0< x| <l—a, |x| >1 +a), (20)
w0, =) =w®xr, —h)  (0<Ix| <l —b,|x| > +b). (11)

3. Solution of the problem

Owing to the symmetry in geometry and loading, it's sufficient to consider only the right side of the ptape®,and
—o00 < y < 0o. Assume that the solution of Egs. (1) and (2) as following integrals:

o0

wD(x, y) =§ / Ar(s)e Y cogtsx) ds,

r ? o (12)
6D x.y) = A8y Dr ) 4 2 / C1(s) €% cogsx) ds,

511 0

2 o0
w®(x,y) = = / [A2(5) e Y + By(s) & @Y] cosisx) ds,

(25’ o (13)
@ (x,y) = 15 w@x, )+ = / [Ca(s) €Y + Dy(s) €] cos(sx) ds,

811 0
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o0
w®(x,y) = ; / [A3(s) @y + B3(s) e_},(z)y] cog(sx) ds,
2 . @
@ (x,y) = 15 w®x, )+ = / [C3(s) €Y + D3(s) e*¥] cos(sx) ds,
811 0
2 o0
w® (x, y) = = / Aq(s) @Y costsx) ds,
(1? o (15)
¢(4) (x,y)= (4)(X y) + = /C4(S) €'Y cogsx) ds,
811 0

wherey ()% = 52 _ 42/¢())? subscript/ (J = 1, 2) stands for piezoelectric materialy (s) (k = 1, 2, 3, 4), By (s) (k = 2, 3),
Cr(s) (k=1,23,4), Di(s) (k=2,3) are unknown functions to be determined from the boundary conditions.
By virtue of constitutive equations (3) and (4), we can obtainetkressions for the stress and electric displacement fields

ry(%) = / uDyDags)e” )y—i—e(l)sCl(s) e %] cog(sx) ds,
o (16)
D(l) E/ (1)sC1(s)e 5Y cog(sx) ds,
"
o
D= ; / @y D[ Ays)e 7PV = By(sy e V] + e{2s[Cas) €7 — Dy(s) €]} cossx) ds,
o an
D§2) =E/s )s [Ca(s) €™ — Dy(s) €] cos(sx) ds,
g 0
o
3= ; / @, @[ 4300877 — By(s) e V] + e 2s[Ca(s) € — D3(s) €]} coslsx) d,
o (18)
pP = —% / @ s[Ca(s) €™ — Da(s) €] costsx) ds,
0
o0
@ ; / [ Dy D agi5)@Y + eV sCas) €] cossx) ds,
0 o (19)
p{» =—§/ DsCals) € costsx) ds.
0

To get the functionsA (s), Bx(s), Cr(s) and Dy (s), the gap functions of the crack surface displacements and the electric
potentials are defined as follows

fur@) =wD e, h) —w@x, ), (20)
fw2) = w®x, —h) —w® (x, —h), (21)
for ) =P h) = ¢@ (. ), (22)

(23)

fp20) =@ x, —h) — @ (x, —h).
Substituting Egs. (12)—(15) into Egs. (20)—(23), and applying Fourier cosine transforms (a superposed bar indicates the Fourier
cosine transforms throughout the papwith the bounda conditions (5), (7), (10and (11), it can be obtained
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(Z)h

Fui(s) = Ar() &7 M — ax(5) e By(s) e (24)
Fuzs) = Az()e M 4 Ba(s) @ P — Ay e )", (25)
o £ © £2 ()
Tor(s) = (l)Al(s)e rPh L cqs)esh - (2) 5[ Ay(s)e M 4 By(sy &M
€11 €11
—[Cas)e™" + Da(s) €] =0, (26)
2
Fpa(s) = (2) 2[435 + Ba(s) & 7] + [Cats) €™ + Dy(s) €]
€11
£ o
(DA ) eV _cyusyeh =0, (27
€11
By applying Fourier cosine transforms to Egs. (16)—(19) with boundary (5)—(11), it can be obtained
M(l))/(l)A]_(S)e y )h+e(1) C]_(S)e_vh
= 1@y @ ay(5)67 M — By(s) @M |+ e2s[Cals) €™ — Da(s) €], (28)
1@y @ Ag(s e P — By(s) @M | + e2s[Cats) € — Da(s) €]
= ,u(l)y(l)A4(s)e v@h +e(1)sC4(s)e Ah (29)
sMCis) e =@ | Cats) 67 — Dy(s) ™|, (30)
2| Ca) e — Da(s) M | = eV Ca(s) €7, (31)
Aa(s) + Bo(s) = A3(s) + Ba(s),  Aa(s) — Ba(s) = —Aa(s) + Ba(s), (32)
Co(s) + Do(s) = C3(s) + Da(s),  Co(s) — Da(s) = —C3(s) + D3(s). (33)

By solving twelve Egs. (24)—(33) with twelve unknown functiofig(s), By (s), Ci(s), Di(s), and substituting the solutions
into Egs. (16) and (19) and applying the boundeoynditions (5), (7)—(9), it can be obtained

o
2 _
—/fwl(s)cos(sx)ds=0, O<x<l—aandx >[+a, (34)
T
2 o
— / Sw2(s)cosx)ds =0, O0<x <[—bandx >1+b, (35)
T

E NN

SHEN
0\8 0\8 o

s[a(s)m(s) + ﬁ(s)m(s)] cogsx)ds=—-19, [—a<x<l+a, (36)

s[B(s) fwi(s) +a(s) fuy2(s)] coisx) ds = —roexp[uw%] I—b<x<Il+D, (37)

wherea (s) andB(s) are known functions and given in Appendix A.

4. Solution of thedual Integral equations

The set of dual integral equations (34)—(37) may be solved by use of the Schmidt method. The gap functions of the crack
surface displacements are represented by the following series

00 _ _n2\1/2
for(0) =) anPrSl/z’l/Z)(x—l><1— x 21) ) , fori—a<x<i+a, y=h, (38a)
a a
n=0
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ad 1/2,1/2)( x —1 (x =2\ 1/?
fwz(x)=2bnp,§/’”(7><1— 3 ) . forl—b<x<l+b, y=—h, (38b)
n=0

wherea, andb, is unknown coefficients to be determined aﬂﬁ/z’l/z)(x) is a Jacobi polynomial (Gradshteyn and Ryzhik,
1980). The Fourier cosine transforms of Eq. (38) are (Erdelyi, 1954)

_ 1
Fut®) == 3 anRyGn($) Jns1(5), (392)
~ n=0
_ 1
Fu2($) == 3 bRy Gn(s)Jn11(sb) (39D)
" n=0
in which
Fn+1+1/2) {(—1)”/2(:os(sl) n=0,2,486,...
R, — 27l t1I+l2) L :
n N o n(s) (—1)(”+1)/28in(sl), n=1,357,...,

I'(x) andJ, (x) are Gamma and Bessel functions, respectively.
Substituting Eg. (39) into Egs. (34)—(37), Egs. (34) and (35) have been automatically satisfied. Integration with respect to
in [l —a, x] and[l — b, x], Eqgs. (36) and (37) reduce to

Z an Ry, / —a(s)Gn(s)Jy+1(sa) [Sln(sx) —sin(s/ — sa)]

+ Z bn Ry / B(5)Grn () Ty 11 (sb)[SiN(sx) — sin(sl — sa)] ds = —%(x —l+a), (40a)
n=0

ZanR,, / B($)Gn () Jyp1(s@)[sin(sx) — sin(sl — sb)] ds
n=0

+ Z bu Ry / =a(5)Gp (s)Jyt1(sb)[sin(sx) — sin(sl — sb) | ds = —% exp[la) ) ](x [ +D). (40b)

Eqg. (40) can now be solved for the coefficientsandb, by the Schmidt method such as in the works (Itou, 2001; Zhou et al.,
1998). The Schmidt method is dtted in the present paper.
5. Intensity factors

The coefficients:, andb,, are known, so that the entire stress and the electric displacement fields can be obtained. Stress

ry(z) and electric displacemem§k) along the cracks lines can be expressed as

00 o
ryz)(x h) _fy;(x h)y == Zaan/{aC+ [a(s) — ac ]} Gu(s) Jy11(sa) cOS(sx) ds

+ = anR,, / B(5)Gn (5)Jy41(sh) cos(sx) ds, (41a)
n 0

o0
ryz)(x —h) = ryz)(x —h) = anRn / {oe + [a(s) — ac ]} G (s) J2,—1(sb) coS(sx) ds

o0
+ 2 Z anRy | B(s)Gn(s)Jpy1(sa)co(sx)ds, (41b)
T n=0
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1 2 2 & T
DY (e ) = DP x. )= = 3 an R / {8c + [6(s) = 8¢]} G ()11 (sa) cOS(sx) s
n:O 0
> & T
+= ) baRy f ¥ ()G (s)J2,-1(sb) COS(sx) D, (410)
T n—O 0
3 4 2 o T
DY (v, =) = DV (5. ~h) = = 3 bu Ry / {8c + [5(5) = 8¢]}Gn ()11 (sb) cOS(sx) s
n:O 0
2 & T
+— > anRy / Y () Jp41(sa)Gp (s) CO5x) ds, (41d)
n:O 0

wherey (s), 8(s), ac andé, are known functions and given in Appendix A.
From the relationships (Gradshteyn and Ryzhik, 1980)

sinfn sin~(y/£)]

00 _— E>1,
) 52 _ 1/,2

/ Jn(s&) sin(sy) ds = (42a)
, &"coqnm/2) ¢

ViZ— &2y +y2 - g2’ ’

in—1

- cos{nSl; (1/12/5)]’ -
/ Jn(s&) cogsy) ds = § _;/’, ) (42b)
J EMsin(nm/2) Ve

V2 g2y +y2 - g2
The singular parts of the stress fields and the singular parts of the electric displacements in Eq. (41) can be expressed respectively
as follows:

o0 o
=@ 2N Ry @x), v @ =1® =257 by Ry H (b, ), (43a)
4 4
n=0 n=0
f— f—
DO =D® = =% "y RyHy(a,x),  D®=DW == by Ry Hy (b, ), (43b)
T n=0 T n=0

whereHy, (a, x), H, (b, x) are known functions and given in Appendix B.
We obtain the dynamic stress intensity factors (DSIEg),, K, g, Kpr andKpg as

o
: 1 de n
Kop= lim  /2x[( —a) —x]z¢ >=—ﬁn§)(—1) an Ry, (44a)

x—>({—a)~

o0
K,p= |m /2n|x—(U+a 1:(1)=—L an Ry, 44b
aR 2o (l+a)+ [ ( )] mrg nin ( )
o0
o
Kpp= lim  J2r[d—b) —x]t™@® = —— S " (=1)"b, Ry, 44c
bL = b~ [ ] «/EHX:% e (44c)
o0
Kpr= lim  J2r[x—d+0)]t@® =2 S bR, 44d
bR T (l4b)+ [ ( )] «/Er;] nfXn ( )

We obtain the dynamic electric displacement intensity factyys, D, g, Dpr, andDpp as

TP b w— 8
D, = lim 27T[(l —a) —X]D(l) = _\/—7:’_61 Z(_l)naan = a_CKaL! (45a)
n=0 ¢

x—>(—a)~

T e — 8
— i _ 1 __ % E _ ¢
Dyg = x—)l(llT-a)+ 2 [x I+ a)]D = — n_oan Rp = p KR, (45b)

C
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S & 8
Dpr = lim 27[(l —b) —x]DW® = — " S~y Ry = £ Ky, 45¢
p=_lim [l —b) —x] m’;)( )"buRn = o= KpL (45c¢)
s, X S
Dpr= lim J2n[x =1 +b)|D® =—— SN bRy = <Kpg. 45d
bR to(+b)* [ ] ,_ﬂbig) nn e bR ( )

From Egs. (44) and (45), it can be seen that the dynamic electric displacement intensity factors can be obtained when the
dynamic stress intensity factors were known.

6. Numerical calculations and discussion

To examine the effects of electro-mechanical interactions on the dynamic stress intensity factors and electric displacement
intensity factors, we carried out numerical calculations for the piezoelectric ceramics PZT-4 and PZT-5H. The material constants
of piezoelectric ceramics are listin Table 1.

The infinite series in Eq. (40) can be truncated by summing the first six terms. The values for left and right sides in Eq. (40a)

are shown withu/b = 1.0, h/b = 0.5, I/b = 1.1 andbw/c = 0.5 in Table 2. Table 3 shows the values in Eq. (40b) for the

same case. From the tables, it can be seen that the Schmidt method has been applied satisfactorily. The normalized DSIFs

(kai = Kap/(VTatg), kar = Kar/(Jmarg), kpy = Kpr, /(W 7btg), kpy = Kpr/(+/mb1g)) are calculated numerically.
From the results in Figs. 2-9, the following observations are very significant:

Table 1

Material constants of piezoelectric ceramics

Materials  caq (x201ON/m2) €15 (C/m2)  e11 (x10710C/Vvm)  p (kg/md)
PZT-4 256 127 64.6 7500
PZT-5H 23 170 1504 7500
Table 2

Values of left and right equation (40a) fafb = 1.0, 1 /b = 0.5,1/b = 1.1 andbw/cD =
0.5

x Y 0anEf(x) + 200 o b Fyf (x) Uo(x)/(—m10/2)
0.3 0.159996— 0.146679x 103 0.160000

0.5 0.320039+ 0.149133x 104 0.320000

0.7 0.479981— 0.744261x 10~ 5j 0.480000

0.9 0.639972— 0.109102x 10~ 4i 0.640000

11 0.800013+ 0.488944x 10~ 5j 0.800000

13 0.960028+ 0.106340x 104 0.960000

15 0.111999— 0.307026x 103 1.120000

17 0.127997— 0.104473x 104 1.280000

Table 3

Values of left and right equation (40b) foyb = 1.0, h/b = 0.5,1/b = 1.1 andbw/cD =
0.5

x Y0 Gr(x) + 302 0 ba Hyf (x) Vo(x)/(=m10/2)

0.3 0.136633+ 0.083246i 0136635+ 0.083252i

0.5 0.273295+ 0.166562i 0273270+ 0.166504i

0.7 0.409893+ 0.249726i 0409905+ 0.249756i

0.9 0.546522+ 0.332965i 0546540+ 0.333007i

11 0.683183+ 0.416278i 0683175+ 0.416259i

13 0.819828+ 0.499553i 0819810+ 0.499511i

15 0.956440+ 0.582751i 0956445+ 0.582763i

17 1093060+ 0.665974i 1093080+ 0.666015i
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Fig. 2. The normalized DSIFs versusw/cd (a/b = 1.0, Fig. 3. The normalized DSIFs versus length of crack/k & 1.2,
h/b=05,1/b =15, elastic material). bw/cD =0.4,h/b=05, PZT-4/PZT-5H/PZT-4).
1 6 T T T T T 1 6 T T T T T T T T T T T T T
TN ——ab=02 | i —k,
x° L ---- a/b=04 | ; i
o 1.2 ) _ o 1AF -k, .
o s | K
8 % N L kbl
T 08t . 2 12l S br i
N = S
@ o T e
£ S
S o04f . Z 40} 4
0.0 L . L . L L L . ' 0.8 1 s I L L s 1 . 1 L 1 s 1
0.0 0.5 1.0 1.5 20 10 15 20 25 30 35 40
bw/c'” I/b
Fig. 4. The normalized DSIFs at left tip of crack 1 versus/c(D Fig. 5. The normalized DSIFs versugb (bw/cD = 04,
for differenta/b (/b = 1.2, h/b = 0.5, PZT-4/PZT-5H/PZT-4). a/b=05,h/b=0.5, PZT-4/PZT-5H/PZT-4).
(1) Fig. 2 displays the variation of the normalized DSIFs with normalized wave nubabef? for elastic materiald/» = 1.0,

@)

®)

4)

©)

h/b =0.5 andi/b = 15). The elastic solutions are obtained from the present formulation for piezoelectric materials by
settingc‘(&) = cﬁ and 6515) = 6525) = 0. From this figure, it can be seen that the numerical results of normalized DSIFs
agree closely with results investigated by Takakuda (1982) using the integral equation method. This implies the correctness
and accuracy of our results.

Fig. 3 exhibits the effect of the length of crack 1 on the normalized DSIF&/foe 1.2, bw/c(l) =0.4 andh/b=0.5
(PZT-4/PZT-5H/PZT-4). It shows that the normalized DSIFs of crack 1 increase with increasipg while those of the

other one decrease, i.e. the normalized DSIFs of the crack 1 increase with the length of the crack 1. A similar phenomenon
can be found in work (Zeng and Rajapakse, 2000). It is interesting to note that the normalized DSIFs at the left tips of
cracks are always lager than those of the right ones.

Fig. 4 shows the effect of length of crack 1 on the noreeali DSIFs at left tip of crack 1 for different normalized wave
numbers and different/b (I/b = 1.2, h/b = 0.5 and PZT-4/PZT-5H/PZT-4). It should be noted that for lower frequencies
(bow/cD < 1.0) k,; increases with increasing ef b. However, for higher frequencies, the effectugh becomes weak.

Fig. 5 shows the effect df’b on normalized DSIFs fabw/cP = 0.4, a/b = 0.5 andh/b = 0.5 (PZT-4/PZT-5H/PZT-4).

The normalized DSIFs decrease with increasing of the distance between two collinear cracks. The normalized DSIFs trend
to steady values whenb > 3.5. The reason is that the amplification effects between collinear cracks become weak.

In Fig. 6, the normalized DSIFs verstigh for [ /b = 1.2,a/b = 0.5 andbw/cD = 0.4 (PZT-4/PZT-5H/PZT-4) are shown.

The magnitude of the normalized DSIFs of crack 1 increase with increasingbofThis is called shielding effect as
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Fig. 6. The normalized stress intensity factors vers@gb = 1.2,
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Fig. 8. The normalized DSIFs versusw/cD (i/b = 1.1,
a/b=0.5,h/b=05, PZT-4/PZT-5H/PZT-4).

discussed in reference (Ratwani and Gupta, 1974). Whién> 4.0, the normalized DSIFs of crack 1 trend to steady
values. The shielding effect is very small whiefb > 4.0. However, the magnitude of the normalized DSIFs of crack 2

Fig. 7. The normalized DSIFs versusw/cD (i/b = 1.1,
a/b=1.0,h/b=0.5, PZT-4/PZT-5H/PZT-4).

Fig. 9. The normalized DSIFs, and ks versus bw/c®
(/b =11, a/b = 05, h/b = 05, PZT-4IPZT-5H/PZT-4 and
PZT-5H/PZT-4/PZT-5H).

exhibits oscillations because the amplitude values of the loading on crack 2 varids/inith
(6) Figs. 7 and 8 show the effect of wave number/cY) on the normalized DSIFs fdi/b = 1.1, h/b = 0.5, a/b = 1.0
or a/b = 0.5 (PZT-4/PZT-5H/PZT-4). The normalized DSIFs increase with the increase of wave némper | until

reach peak values, and then decease with the increalse/of?. From the results, it can be concluded that the stress
concentration can be deduced by adjusting the frequency ofintigaves in engineering practices. It can also be observed
that the peak value occurs at different frequency for each crack. The present results show similar trends to those for materials
without piezoelectric effect (Takakuda, 1982).
(7) Fig. 9 shows the effect of materials properties on the normalized DSIFgifer 1.1, a/b = 0.5, h /b = 0.5 (PZT-4/PZT-
5H/PZT-4 and PZT-5H/PZT-4/PZT-5H). It can be seen that, the results of normalized DSIFs for PZT-4/PZT-5H/PZT-4 are
smaller than those for the other combination wien'c® < 1.2. The results reveal that the stress concentration can be
adjusted by bonding different piezoelectric layer.
Based on the numerical calculation outlined above, it can be concluded that the normalized DSIFs depend on the length of
cracks, thickness of piezoelectric strip, frequency of incident wave and materials properties.
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Appendix B
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