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Abstract

This study is concerned with the treatment of the dynamic behavior of interacting cracks in a piezoelectric layer bonde
dissimilar piezoelectric half planes subjected to harmonic anti-plane shear waves. The permeable electricboundary condition
is considered. By use of the Fourier transform technique, the problem can be solved with the help of two pairs of dua
equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solv
integral equations, the jumps of the displacements across the crack surfaces are expanded in two series of Jacobi po
The electromechanical behavior of two pairs of unequal parallel cracks was determined. Numerical examples are provide
show the effects of the geometry of the cracks, the frequency of the incident waves and materials properties upon the
stress intensity factors (DSIFs) and the electric displacement intensity factors.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Due to the inherent direct and converse piezoelectric effects between mechanical deformation and electric field, pie
materials have been widely used in transducers and sensors. Among the piezoelectric materials, piezoelectric ce
widely used due to their high piezoelectric performance. However, piezoelectric ceramics in mechanical behavior are b
susceptible to cracking. Therefore, it’s necessary to analyze theoretically and describe accurately quantitatively the damage
fracture processes taking place in piezoelectric materials.

Piezoelectric materials are mostly being used or considered for use in situations where dynamic loading is involve
fore, it’s more important to study dynamic mechanics of these materials. Chen and Yu (1998) investigated the a
vibration of infinite cracked piezoelectric medium with a single crack under impermeable electric boundary condition. Narita
and Shindo (1998) solved the problem of a line crack subjected to horizontally polarized shear waves in an arbitrary
with the help of the dynamic theory of anti-plane piezoelectricity. Meguid and Wang (1998) studied the dynamic interac
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tween two cracks in a piezoelectric medium under incident anti-plane shear waves loading. They also investigated the dynamic
loading
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behavior of piezoelectric materials containing interacting cracks under anti-plane mechanical and in-plane electric
(Wang and Meguid, 2000). Many piezoelectric devices are multi-layered by dissimilar piezoelectric materials, and they ar
susceptible to cracking due to uneven stress distributions. Following the dynamic theory of linear piezoelectricity, Shin
(2002) considered the scattering of horizontally polarized shear waves from a single piezoelectric fiber partially bond
elastic matrix. The problem of interface cracks in piezoelectric materials can be found in works (Soh et al., 2000; Li an
2003; Zhou and Wang, 2002; Narita et al., 1999). Recently, Huanget al. (2002) studied the permeable multi-cracks problem
in one kind of piezoelectric material strip subjected to dynamic anti-plane shear loading. However, the lengths of cr
the same and cracks are not interface cracks. According to the authors’ knowledge, the dynamic electro-elastic behav
pairs unequal parallel permeable interface cracks has not been studied.

In this paper, the scattering of anti-plane shear waves in piezoelectric materials with two pairs of unequal parallel
cracks is considered by use of Schmidt method. By use of the Fourier transform, the problem could be solved with two
dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces
the dual integral equations, the jumps of the displacements across the crack surfaces were expanded in two serie
polynomials. This process is quite different from those adopted in the references mentioned above. Some numeric
are presented graphically to show the effects of the geometric parameters, the frequency of the incident waves and
properties on the dynamic stress and electric displacement intensity factors.

2. Statement of the problem

Consider an infinitely long piezoelectric layer with 2h in thickness bonded to two dissimilar piezoelectric half planes
jected to harmonic anti-plane shear waves, as shown in Fig. 1. Here, Cartesian coordinates(x, y, z) are the principal axes of th
material symmetry, while thez-axis is oriented in the poling direction of the piezoelectric materials. It is assumed that two
of unequal parallel Griffith interface cracks with different lengths(2a,2b) are located along the bonding line. Consider one
of cracks located froml − a to l + a at y = h and froml − b to l + b at y = −h, with respect to the rectangular coordina
(x, y), and the other pair located from−l − a to −l + a aty = h and from−l − b to −l + b aty = −h. In the present study, th
harmonic anti-plane shear waves is vertically incident. The mechanical field corresponding to a time harmonic wave
expressed in terms of the frequencyω, such thatτyz(x, y, t) = τ0 exp[−iωt]. Because the time dependence of all field quanti
assumed to be of the form exp[−iωt] is a common factor in all equations, it will be suppressed. We only consider thatτ0 is
positive. Body forces and the free charges are ignored in the present work.

The dynamic anti-plane governing differential equations for piezoelectric materials in absence of body forces
charges can be expressed as follows

c
(k)
44 ∇2w(k) + e

(k)
15 ∇2φ(k) = ρ(k) ∂2w(k)

∂t2
, (1)

e
(k)
15 ∇2w(k) − ε

(k)
11 ∇2φ(k) = 0 (2)

Fig. 1. Two pairs of unequal parallel interface cracks in piezoelectric materials.
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in whichw(k) andφ(k) are the mechanical displacement and the electric potential, andρ(k) is the mass density of piezoelectric
(k) (k) (k)

the

nsors,

hear prob-
l electric

able electric
e

materials,c44 is the elastic stiffness measured in a constant electric field,e15 is the piezoelectric constant andε11 is the

dielectric permittivity measured at a uniform strain of the piezoelectric materials, while∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-
dimensional Laplace operator. The superscriptk (k = 1,2,3,4) refers to the upper half plane-1, the layer-2, the layer-3 and
lower half plane-4 as shown in Fig. 1, respectively.

The constitutive equations of the piezoelectric materials are

τ
(k)
jz

= c
(k)
44 w

(k)
,j

+ e
(k)
15 φ

(k)
,j

, (3)

D
(k)
j = e

(k)
15 w

(k)
,j − ε

(k)
11 φ

(k)
,j , (4)

where τ
(k)
jz

, w
(k)
,j

, φ
(k)
,j

and D
(k)
j

(j = x, y) are the stress, strain, electric field strength and electric displacement te
respectively.

As discussed in reference (Soh et al., 2000), since the opening displacement is zero for the present anti-plane s
lem, the crack surfaces can be assumed to be in perfect contact. Accordingly, both the electric potential and norma
displacement are assumed to be continuous across the crack surfaces. Therefore, in this paper, we obtain the perme
boundary condition. Similar to the work (Narita and Shindo,1998), the boundary conditions ofthe present problem can b
stated below:

τ
(1)
yz (x,h) = τ

(2)
yz (x,h), φ(1)(x,h) = φ(2)(x,h),

D
(1)
y (x,h) = D

(2)
y (x,h)

(|x| � 0
)
, (5a-c)

w(2)(x,0) = w(3)(x,0), τ
(2)
yz (x,0) = τ

(3)
yz (x,0),

φ(2)(x,0) = φ(3)(x,0), D
(2)
y (x,0) = D

(3)
y (x,0)

(|x| � 0
)
, (6a-d)

τ
(3)
yz (x,−h) = τ

(4)
yz (x,−h), φ(3)(x,−h) = φ(4)(x,−h),

D
(3)
y (x,−h) = D

(4)
y (x,−h)

(|x| � 0
)
, (7a-c)

τ
(1)
yz (x,h) = τ

(2)
yz (x,h) = −τ0

(
l − a � |x| � l + a

)
, (8)

τ
(3)
yz (x,−h) = τ

(4)
yz (x,−h) = −τ0 exp

[
iω

2h

c(2)

] (
l − b � |x| � l + b

)
, (9)

w(1)(x,h) = w(2)(x,h)
(
0 � |x| < l − a, |x| > l + a

)
, (10)

w(3)(x,−h) = w(4)(x,−h)
(
0 � |x| < l − b, |x| > l + b

)
. (11)

3. Solution of the problem

Owing to the symmetry in geometry and loading, it’s sufficient to consider only the right side of the planes,x � 0 and
−∞ < y < ∞. Assume that the solution of Eqs. (1) and (2) as following integrals:




w(1)(x, y) = 2

π

∞∫
0

A1(s)e−γ (1)y cos(sx)ds,

φ(1)(x, y) = e
(1)
15

ε
(1)
11

w(1)(x, y) + 2

π

∞∫
0

C1(s)e−sy cos(sx)ds,

(12)




w(2)(x, y) = 2

π

∞∫
0

[
A2(s)e−γ (2)y + B2(s)eγ (2)y

]
cos(sx)ds,

φ(2)(x, y) = e
(2)
15

ε
(2)
11

w(2)(x, y) + 2

π

∞∫
0

[
C2(s)e−sy + D2(s)esy

]
cos(sx)ds,

(13)
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w(3)(x, y) = 2
∞∫ [

A3(s)eγ (2)y + B3(s)e−γ (2)y
]
cos(sx)ds,

lds

ectric

e Fourier



π
0

φ(3)(x, y) = e
(2)
15

ε
(2)
11

w(3)(x, y) + 2

π

∞∫
0

[
C3(s)esy + D3(s)e−sy

]
cos(sx)ds,

(14)




w(4)(x, y) = 2

π

∞∫
0

A4(s)eγ (1)y cos(sx)ds,

φ(4)(x, y) = e
(1)
15

ε
(1)
11

w(4)(x, y) + 2

π

∞∫
0

C4(s)esy cos(sx)ds,

(15)

whereγ (J )2 = s2 − ω2/c(J )2
, subscriptJ (J = 1,2) stands for piezoelectric materials.Ak(s) (k = 1,2,3,4), Bk(s) (k = 2,3),

Ck(s) (k = 1,2,3,4), Dk(s) (k = 2,3) are unknown functions to be determined from the boundary conditions.
By virtue of constitutive equations (3) and (4), we can obtain theexpressions for the stress and electric displacement fie




τ
(1)
yz = − 2

π

∞∫
0

[
µ(1)γ (1)A1(s)e−γ (1)y + e

(1)
15 sC1(s)e−sy

]
cos(sx)ds,

D
(1)
y = 2

π

∞∫
0

ε
(1)
11 sC1(s)e−sy cos(sx)ds,

(16)




τ
(2)
yz = − 2

π

∞∫
0

{
µ(2)γ (2)

[
A2(s)e−γ (2)y − B2(s)eγ (2)y

] + e
(2)
15 s

[
C2(s)e−sy − D2(s)esy

]}
cos(sx)ds,

D
(2)
y = 2

π

∞∫
0

ε
(2)
11 s

[
C2(s)e−sy − D2(s)esy

]
cos(sx)ds,

(17)




τ
(3)
yz = 2

π

∞∫
0

{
µ(2)γ (2)

[
A3(s)eγ (2)y − B3(s)e−γ (2)y

] + e
(2)
15 s

[
C3(s)esy − D3(s)e−sy

]}
cos(sx)ds,

D
(3)
y = − 2

π

∞∫
0

ε
(2)
11 s

[
C3(s)esy − D3(s)e−sy

]
cos(sx)ds,

(18)




τ
(4)
yz = 2

π

∞∫
0

[
µ(1)γ (1)A4(s)eγ (1)y + e

(1)
15 sC4(s)esy

]
cos(sx)ds,

D
(4)
y = − 2

π

∞∫
0

ε
(1)
11 sC4(s)esy cos(sx)ds.

(19)

To get the functionsAk(s), Bk(s), Ck(s) and Dk(s), the gap functions of the crack surface displacements and the el
potentials are defined as follows

fw1(x) = w(1)(x,h) − w(2)(x,h), (20)

fw2(x) = w(3)(x,−h) − w(4)(x,−h), (21)

fφ1(x) = φ(1)(x,h) − φ(2)(x,h), (22)

fφ2(x) = φ(3)(x,−h) − φ(4)(x,−h). (23)

Substituting Eqs. (12)–(15) into Eqs. (20)–(23), and applying Fourier cosine transforms (a superposed bar indicates th
cosine transforms throughout the paper) with the boundary conditions (5), (7), (10)and (11), it can be obtained
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fw1(s) = A1(s)e−γ (1)h − A2(s)e−γ (2)h − B2(s)eγ (2)h, (24)
(2) (2) (1)

s

he crack
fw2(s) = A3(s)e−γ h + B3(s)eγ h − A4(s)e−γ h, (25)

fφ1(s) = e
(1)
15

ε
(1)
11

A1(s)e−γ (1)h + C1(s)e−sh − e
(2)
15

ε
(2)
11

[
A2(s)e−γ (2)h + B2(s)eγ (2)h

]

− [
C2(s)e−sh + D2(s)esh

] = 0, (26)

fφ2(s) = e
(2)
15

ε
(2)
11

[
A3(s)e−γ (2)h + B3(s)eγ (2)h

] + [
C3(s)e−sh + D3(s)esh

]

− e
(1)
15

ε
(1)
11

A4(s)e−γ (1)h − C4(s)e−sh = 0. (27)

By applying Fourier cosine transforms to Eqs. (16)–(19) with boundary (5)–(11), it can be obtained

µ(1)γ (1)A1(s)e−γ (1)h + e
(1)
15 sC1(s)e−sh

= µ(2)γ (2)
⌊
A2(s)e−γ (2)h − B2(s)eγ (2)h

⌋ + e
(2)
15 s

[
C2(s)e−sh − D2(s)esh

]
, (28)

µ(2)γ (2)
⌊
A3(s)e−γ (2)h − B3(s)eγ (2)h

⌋ + e
(2)
15 s

[
C3(s)e−sh − D3(s)esh

]
= µ(1)γ (1)A4(s)e−γ (1)h + e

(1)
15 sC4(s)e−sh, (29)

ε
(1)
11 C1(s)e−sh = ε

(2)
11

⌊
C2(s)e−sh − D2(s)esh

⌋
, (30)

ε
(2)
11

⌊
C3(s)e−sh − D3(s)esh

⌋ = ε
(1)
11 C4(s)e−sh, (31)

A2(s) + B2(s) = A3(s) + B3(s), A2(s) − B2(s) = −A3(s) + B3(s), (32)

C2(s) + D2(s) = C3(s) + D3(s), C2(s) − D2(s) = −C3(s) + D3(s). (33)

By solving twelve Eqs. (24)–(33) with twelve unknown functionsAk(s), Bk(s), Ck(s), Dk(s), and substituting the solution
into Eqs. (16) and (19) and applying the boundaryconditions (5), (7)–(9), it can be obtained

2

π

∞∫
0

fw1(s)cos(sx)ds = 0, 0 � x < l − a andx > l + a, (34)

2

π

∞∫
0

fw2(s)cos(sx)ds = 0, 0 � x < l − b andx > l + b, (35)

2

π

∞∫
0

s
[
α(s)fw1(s) + β(s)fw2(s)

]
cos(sx)ds = −τ0, l − a � x � l + a, (36)

2

π

∞∫
0

s
[
β(s)fw1(s) + α(s)fw2(s)

]
cos(sx)ds = −τ0 exp

[
iω

2h

c(2)

]
, l − b � x � l + b, (37)

whereα(s) andβ(s) are known functions and given in Appendix A.

4. Solution of the dual Integral equations

The set of dual integral equations (34)–(37) may be solved by use of the Schmidt method. The gap functions of t
surface displacements are represented by the following series

fw1(x) =
∞∑

n=0

anP
(1/2,1/2)
n

(
x − l

a

)(
1− (x − l)2

a2

)1/2
, for l − a � x � l + a, y = h, (38a)
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fw2(x) =
∞∑

bnP
(1/2,1/2)
n

(
x − l

)(
1− (x − l)2

2

)1/2
, for l − b � x � l + b, y = −h, (38b)

ik,

pect to

t al.,

. Stress
n=0
b b

wherean andbn is unknown coefficients to be determined andP
(1/2,1/2)
n (x) is a Jacobi polynomial (Gradshteyn and Ryzh

1980). The Fourier cosine transforms of Eq. (38) are (Erdelyi, 1954)

fw1(s) = 1

s

∞∑
n=0

anRnGn(s)Jn+1(sa), (39a)

fw2(s) = 1

s

∞∑
n=0

bnRnGn(s)Jn+1(sb) (39b)

in which

Rn = 2
√

π
�(n + 1+ 1/2)

n! , Gn(s) =
{

(−1)n/2 cos(sl), n = 0,2,4,6, . . . ,

(−1)(n+1)/2 sin(sl), n = 1,3,5,7, . . . ,

�(x) andJn(x) are Gamma and Bessel functions, respectively.
Substituting Eq. (39) into Eqs. (34)–(37), Eqs. (34) and (35) have been automatically satisfied. Integration with resx

in [l − a, x] and[l − b, x], Eqs. (36) and (37) reduce to

∞∑
n=0

anRn

∞∫
0

1

s
α(s)Gn(s)Jn+1(sa)

[
sin(sx) − sin(sl − sa)

]
ds

+
∞∑

n=0

bnRn

∞∫
0

1

s
β(s)Gn(s)Jn+1(sb)

[
sin(sx) − sin(sl − sa)

]
ds = −πτ0

2
(x − l + a), (40a)

∞∑
n=0

anRn

∞∫
0

1

s
β(s)Gn(s)Jn+1(sa)

[
sin(sx) − sin(sl − sb)

]
ds

+
∞∑

n=0

bnRn

∞∫
0

1

s
α(s)Gn(s)Jn+1(sb)

[
sin(sx) − sin(sl − sb)

]
ds = −πτ0

2
exp

[
iω

2h

c(2)

]
(x − l + b). (40b)

Eq. (40) can now be solved for the coefficientsan andbn by the Schmidt method such as in the works (Itou, 2001; Zhou e
1998). The Schmidt method is omitted in the present paper.

5. Intensity factors

The coefficientsan andbn are known, so that the entire stress and the electric displacement fields can be obtained

τ
(k)
yz and electric displacementD

(k)
y along the cracks lines can be expressed as

τ
(1)
yz (x,h) = τ

(2)
yz (x,h) = 2

π

∞∑
n=0

anRn

∞∫
0

{
αc + [

α(s) − αc

]}
Gn(s)Jn+1(sa)cos(sx)ds

+ 2

π

∞∑
n=0

bnRn

∞∫
0

β(s)Gn(s)Jn+1(sb)cos(sx)ds, (41a)

τ
(3)
yz (x,−h) = τ

(4)
yz (x,−h) = 2

π

∞∑
n=1

bnRn

∞∫
0

{
αc + [

α(s) − αc

]}
Gn(s)J2n−1(sb)cos(sx)ds

+ 2

π

∞∑
n=0

anRn

∞∫
0

β(s)Gn(s)Jn+1(sa)cos(sx)ds, (41b)
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D
(1)
y (x,h) = D

(2)
y (x,h) = 2

∞∑
anRn

∞∫ {
δc + [

δ(s) − δc
]}

Gn(s)Jn+1(sa)cos(sx)ds

espectively
π
n=0 0

+ 2

π

∞∑
n=0

bnRn

∞∫
0

γ (s)Gn(s)J2n−1(sb)cos(sx)ds, (41c)

D
(3)
y (x,−h) = D

(4)
y (x,−h) = 2

π

∞∑
n=0

bnRn

∞∫
0

{
δc + [

δ(s) − δc
]}

Gn(s)Jn+1(sb)cos(sx)ds

+ 2

π

∞∑
n=0

anRn

∞∫
0

γ (s)Jn+1(sa)Gn(s)cos(sx)ds, (41d)

whereγ (s), δ(s), αc andδc are known functions and given in Appendix A.
From the relationships (Gradshteyn and Ryzhik, 1980)

∞∫
0

Jn(sξ)sin(sψ)ds =




sin[nsin−1(ψ/ξ)]√
ξ2 − ψ2

, ξ > ψ,

ξn cos(nπ/2)√
ψ2 − ξ2[ψ +

√
ψ2 − ξ2]n , ψ > ξ,

(42a)

∞∫
0

Jn(sξ)cos(sψ)ds =




cos[nsin−1(ψ/ξ)]√
ξ2 − ψ2

, ξ > ψ,

− ξn sin(nπ/2)√
ψ2 − ξ2[ψ +

√
ψ2 − ξ2]n , ψ > ξ.

(42b)

The singular parts of the stress fields and the singular parts of the electric displacements in Eq. (41) can be expressed r
as follows:

τ (1) = τ (2) = αc

π

∞∑
n=0

anRnHn(a, x), τ (3) = τ (4) = αc

π

∞∑
n=0

bnRnHn(b, x), (43a)

D(1) = D(2) = δc

π

∞∑
n=0

anRnHn(a, x), D(3) = D(4) = δc

π

∞∑
n=0

bnRnHn(b, x), (43b)

whereHn(a, x), Hn(b, x) are known functions and given in Appendix B.
We obtain the dynamic stress intensity factors (DSIFs)KaL, KaR , KbL andKbR as

KaL = lim
x→(l−a)−

√
2π

[
(l − a) − x

]
τ (1) = − αc√

πa

∞∑
n=0

(−1)nanRn, (44a)

KaR = lim
x→(l+a)+

√
2π

[
x − (l + a)

]
τ (1) = − αc√

πa

∞∑
n=0

anRn, (44b)

KbL = lim
x→(l−b)−

√
2π

[
(l − b) − x

]
τ (4) = − αc√

πb

∞∑
n=0

(−1)nbnRn, (44c)

KbR = lim
x→(l+b)+

√
2π

[
x − (l + b)

]
τ (4) = − αc√

πb

∞∑
n=0

bnRn. (44d)

We obtain the dynamic electric displacement intensity factorsDaL, DaR , DbL andDbR as

DaL = lim
x→(l−a)−

√
2π

[
(l − a) − x

]
D(1) = − δc√

πa

∞∑
n=0

(−1)nanRn = δc

αc
KaL, (45a)

DaR = lim
x→(l+a)+

√
2π

[
x − (l + a)

]
D(1) = − δc√

πa

∞∑
n=0

anRn = δc

αc
KaR, (45b)



1000 J.-L. Sun et al. / European Journal of Mechanics A/Solids 23 (2004) 993–1005

DbL = lim −

√
2π

[
(l − b) − x

]
D(4) = − δc√

∞∑
(−1)nbnRn = δc

KbL, (45c)

when the

lacement
onstants

q. (40a)
the
zed DSIFs
x→(l−b) πb
n=0

αc

DbR = lim
x→(l+b)+

√
2π

[
x − (l + b)

]
D(4) = − δc√

πb

∞∑
n=0

bnRn = δc

αc
KbR. (45d)

From Eqs. (44) and (45), it can be seen that the dynamic electric displacement intensity factors can be obtained
dynamic stress intensity factors were known.

6. Numerical calculations and discussion

To examine the effects of electro-mechanical interactions on the dynamic stress intensity factors and electric disp
intensity factors, we carried out numerical calculations for the piezoelectric ceramics PZT-4 and PZT-5H. The material c
of piezoelectric ceramics are list in Table 1.

The infinite series in Eq. (40) can be truncated by summing the first six terms. The values for left and right sides in E
are shown witha/b = 1.0, h/b = 0.5, l/b = 1.1 andbω/c(1) = 0.5 in Table 2. Table 3 shows the values in Eq. (40b) for
same case. From the tables, it can be seen that the Schmidt method has been applied satisfactorily. The normali
(kal = KaL/(

√
πaτ0), kar = KaR/(

√
πaτ0), kbl = KbL/(

√
πbτ0), kbr = KbR/(

√
πbτ0)) are calculated numerically.

From the results in Figs. 2–9, the following observations are very significant:

Table 1
Material constants of piezoelectric ceramics

Materials c44 (×1010 N/m2) e15 (C/m2) ε11 (×10−10 C/Vm) ρ (kg/m3)

PZT-4 2.56 12.7 64.6 7500
PZT-5H 2.3 17.0 150.4 7500

Table 2
Values of left and right equation (40a) fora/b = 1.0, h/b = 0.5, l/b = 1.1 andbω/c(1) =
0.5

x
∑∞

n=0 anE∗
n(x) + ∑∞

n=0 bnF ∗
n (x) U0(x)/(−πτ0/2)

0.3 0.159996− 0.146679× 10−5i 0.160000
0.5 0.320039+ 0.149133× 10−4i 0.320000
0.7 0.479981− 0.744261× 10−5i 0.480000
0.9 0.639972− 0.109102× 10−4i 0.640000
1.1 0.800013+ 0.488944× 10−5i 0.800000
1.3 0.960028+ 0.106340× 10−4i 0.960000
1.5 0.111999− 0.307026× 10−5i 1.120000
1.7 0.127997− 0.104473× 10−4i 1.280000

Table 3
Values of left and right equation (40b) fora/b = 1.0,h/b = 0.5, l/b = 1.1 andbω/c(1) =
0.5

x
∑∞

n=0 anG∗
n(x) + ∑∞

n=0 bnH ∗
n (x) V0(x)/(−πτ0/2)

0.3 0.136633+ 0.083246i 0.136635+ 0.083252i
0.5 0.273295+ 0.166562i 0.273270+ 0.166504i
0.7 0.409893+ 0.249726i 0.409905+ 0.249756i
0.9 0.546522+ 0.332965i 0.546540+ 0.333007i
1.1 0.683183+ 0.416278i 0.683175+ 0.416259i
1.3 0.819828+ 0.499553i 0.819810+ 0.499511i
1.5 0.956440+ 0.582751i 0.956445+ 0.582763i
1.7 1.093060+ 0.665974i 1.093080+ 0.666015i
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Fig. 2. The normalized DSIFs versusbω/c(1) (a/b = 1.0,
h/b = 0.5, l/b = 15, elastic material).

Fig. 3. The normalized DSIFs versus length of crack 1 (l/b = 1.2,
bω/c(1) = 0.4, h/b = 0.5, PZT-4/PZT-5H/PZT-4).

Fig. 4. The normalized DSIFs at left tip of crack 1 versusbω/c(1)

for differenta/b (l/b = 1.2, h/b = 0.5, PZT-4/PZT-5H/PZT-4).
Fig. 5. The normalized DSIFs versusl/b (bω/c(1) = 0.4,
a/b = 0.5, h/b = 0.5, PZT-4/PZT-5H/PZT-4).

(1) Fig. 2 displays the variation of the normalized DSIFs with normalized wave numberbω/c(1) for elastic material (a/b = 1.0,
h/b = 0.5 andl/b = 15). The elastic solutions are obtained from the present formulation for piezoelectric mater

settingc
(1)
44 = c

(2)
44 ande

(1)
15 = e

(2)
15 = 0. From this figure, it can be seen that the numerical results of normalized D

agree closely with results investigated by Takakuda (1982) using the integral equation method. This implies the co
and accuracy of our results.

(2) Fig. 3 exhibits the effect of the length of crack 1 on the normalized DSIFs forl/b = 1.2, bω/c(1) = 0.4 andh/b = 0.5
(PZT-4/PZT-5H/PZT-4). It shows that the normalized DSIFs of crack 1 increase with increasing ofa/b while those of the
other one decrease, i.e. the normalized DSIFs of the crack 1 increase with the length of the crack 1. A similar phe
can be found in work (Zeng and Rajapakse, 2000). It is interesting to note that the normalized DSIFs at the le
cracks are always lager than those of the right ones.

(3) Fig. 4 shows the effect of length of crack 1 on the normalized DSIFs at left tip of crack 1 for different normalized wa
numbers and differenta/b (l/b = 1.2, h/b = 0.5 and PZT-4/PZT-5H/PZT-4). It should be noted that for lower frequen
(bω/c(1) < 1.0) kal increases with increasing ofa/b. However, for higher frequencies, the effect ofa/b becomes weak.

(4) Fig. 5 shows the effect ofl/b on normalized DSIFs forbω/c(1) = 0.4, a/b = 0.5 andh/b = 0.5 (PZT-4/PZT-5H/PZT-4).
The normalized DSIFs decrease with increasing of the distance between two collinear cracks. The normalized DS
to steady values whenl/b > 3.5. The reason is that the amplification effects between collinear cracks become weak

(5) In Fig. 6, the normalized DSIFs versush/b for l/b = 1.2,a/b = 0.5 andbω/c(1) = 0.4 (PZT-4/PZT-5H/PZT-4) are shown
The magnitude of the normalized DSIFs of crack 1 increase with increasing ofh/b. This is called shielding effect a
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Fig. 6. The normalized stress intensity factors versush (l/b = 1.2,
a/b = 0.5, bω/c(1) = 0.4, PZT-4/PZT-5H/PZT-4).

Fig. 7. The normalized DSIFs versusbω/c(1) (l/b = 1.1,
a/b = 1.0, h/b = 0.5, PZT-4/PZT-5H/PZT-4).

Fig. 8. The normalized DSIFs versusbω/c(1) (l/b = 1.1,
a/b = 0.5, h/b = 0.5, PZT-4/PZT-5H/PZT-4).

Fig. 9. The normalized DSIFskal and kar versus bω/c(1)

(l/b = 1.1, a/b = 0.5, h/b = 0.5, PZT-4/PZT-5H/PZT-4 and
PZT-5H/PZT-4/PZT-5H).

discussed in reference (Ratwani and Gupta, 1974). Whenh/b > 4.0, the normalized DSIFs of crack 1 trend to stea
values. The shielding effect is very small whenh/b > 4.0. However, the magnitude of the normalized DSIFs of crac
exhibits oscillations because the amplitude values of the loading on crack 2 varies withh/b.

(6) Figs. 7 and 8 show the effect of wave numberbω/c(1) on the normalized DSIFs forl/b = 1.1, h/b = 0.5, a/b = 1.0
or a/b = 0.5 (PZT-4/PZT-5H/PZT-4). The normalized DSIFs increase with the increase of wave numberbω/c(1) , until
reach peak values, and then decease with the increase ofbω/c(1). From the results, it can be concluded that the st
concentration can be deduced by adjusting the frequency of incident waves in engineering practices. It can also be obse
that the peak value occurs at different frequency for each crack. The present results show similar trends to those for
without piezoelectric effect (Takakuda, 1982).

(7) Fig. 9 shows the effect of materials properties on the normalized DSIFs forl/b = 1.1, a/b = 0.5, h/b = 0.5 (PZT-4/PZT-
5H/PZT-4 and PZT-5H/PZT-4/PZT-5H). It can be seen that, the results of normalized DSIFs for PZT-4/PZT-5H/PZ
smaller than those for the other combination whenbω/c(1) < 1.2. The results reveal that the stress concentration ca
adjusted by bonding different piezoelectric layer.

(8) Based on the numerical calculation outlined above, it can be concluded that the normalized DSIFs depend on the
cracks, thickness of piezoelectric strip, frequency of incident wave and materials properties.
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15 ε
(2)2

11 + γ
(1)
N

µ(2)ε
(1)
11

(
ε
(1)2

11 + ε
(2)2

11

))
,

V11 = −2H1H3e
(2)
15 γ

(2)
N

µ(1)ε
(1)3

11 ε
(2)
11

(
e
(2)
15 ε

(1)
11 − 2e

(1)
15 ε

(2)
11

)
,

V12 = −2H1H3γ
(2)
N µ(2)ε

(1)2

11 ε
(2)3

11

(
e
(1)2

15 − 2γ
(1)
N µ(1)ε

(1)
11

)
,

V = V1 + V2 + V3 + V4 + V5 + V6 + V7 + V8 + V9 + V10 + V11+ V12,

α(s) = R/V, β(s) = S/V, δ(s) = T/V, γ (s) = U/V,

lim
s→∞α(s) = αc, lim

s→∞β(s) = βc, lim
s→∞ δ(s) = δc.

Appendix B

Hn(η,x) = (−1)n+1F1(η, x,n), n = 0,1,2,3, . . . , for 0< x < l − η,

Hn(η, x) = −F2(η, x,n), n = 0,1,2,3, . . . , for x > l + η,

F1(η, x,n) = ηn+1√
(l − x)2 − η2[(l − x) +

√
(l − x)2 − η2]n+1

,

F2(η, x,n) = ηn+1√
(x − l)2 − η2[(x − l) +

√
(x − l)2 − η2]n+1

(η = a, b).
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